o

LR o N T L by K
, } ) _ 'f\fy"‘“ o A ey

HA&L f::L—’ 55 7 43

| ,.J’FINITE ELEMENT MODELING
| OF A CANTILEVER BEAM e

;"JERRY F. KUZANEK. -
N 67-22881
}‘ , ‘ ! 7 i“‘ | t' g (PAGZ‘)-; (THR/U, ‘ -
T B ! / ) \ ‘ g (NAsAc-Z:/’Rq:v\x/;o:ééuan{:é \%_\ | \

-.MARCH 1967:

'GODDARD SPACE FLIGHT cr.unan _
| GREENBELT, MARYLAND

. ‘ N




FINITE ELEMENT MODELING
OF A
CANTILEVER BEAM

By
Jerry F. Kuzanek
Test and Evaluation Division
Systems Reliability Directorate

March 1967

Goddard Space Flight Center
Greenbelt, Maryland

X-321-67-97



rRECEDING PAGE BLANK NOT: FILMED.

FINITE ELEMENT MODELING
OF A
CANTILEVER BEAM

r
Prepared by: _ML&%ML.
Jerry F, Kuzanek

Structural Analysis Computer Group

Reviewed by: .
Thomas G. Butler
Head, Structural Analysis Computer Group

Approved by:

iii



Project Status

The present report is one of a series of finite element modeling studies
which is to be used as a basis for a handbook of modeling techniques.

Authorization

Test and Evaluation Division charge No., 321-124-08-05-14

iv



CONTENTS

Page
ABSTRACT . . . it ittt it ettt sannennans e e eo .. Vii
1, INTRODUCTION ...... e e e SRR . 1
2. THEORETICAL SOLUTIONS .....ce00.. e v s ueve e 2
3. FINITE ELEMENT MODELS ... ... 0.ttt ittt inrenenecoeens 5
Three Digit Bending Model ...... e ettt e s e e 5
Two Digit Bending Model. ... ... st e e s st e et ese. 6
Diagonal Model . ... ... .ttt iii it iinteeeeeceencensenan 9
EXAMPLES .. ... L 16
1" X 1" x 25" Aluminum Cantilever Beam. ... .. .. cco v, 16
10" X 5" X 25" Aluminum Cantilever Beam . . . . ... ......00c... 22
4. CONCLUSIONS. . ¢ ettt e vvooeseeccosas e ses e ceseeene 26
REFERENCES. . ... ¢ttt ttteetereesecssncsesnsoasassa 26



Figure

U W

II

I

Iv

VI

ILLUSTRATIONS

Page
Three Digit Bending Model (n Partitions) . . « v v v v v eseeseeaes 6
Two Digit Bending Model (n Partitions) . . ... ... 0. S
Sliceof Beam .......000.. Gt et et e -
Diagonal Model (n Partitions). . ... Gt t e e e e s s et s e s s ee e e 10
Beam and Diagonal Model Segment ... ... cc o0 vt ceeee. 12
Shear Deformation of a Diagonal Model Segment . .. .......... 13
Shear Forces Acting at the Grid Points of a Diagonal
Model Segment . ......c0c0.. et et e et e st . 15
TABLES
Page

Input to the Structural Analysis Computer

Program for Finite Element Models with 25

Partitions of a 1'" X 1" X 25" Aluminum

Cantilever Beam .. . v e oo 0000 e oo c e et et s e s e 17
Frequencies of a 1" X 1" X 25" Aluminum

Cantilever Beam According to the Three

Theories and Three Models with 25 Partitions ........... ... 18
Frequencies of a 1" X 1" X 25" Aluminum Cantilever

Beam According to the Timoshenko Theory and the

Diagonal Model with 50 Partitions. .. ........ S &
Fifth Mode Shape of a 1'" X 1'" X 25" Aluminum

Cantilever Beam .. ... ... et et e e e et s c e e e e 20
Tenth Mode Shape of a 1" x 1" X 25"

Aluminum Cantilever Beam ., . . . . ¢t ¢t vt v e i s et onesonn 21
Frequencies of a 10" X 5" X 25" Aluminum Cantilever Beam ..... 24
Fourth, Fifth, and Eleventh Mode Shapes of

a 10" x 5" x 25" Aluminum Cantilever Beam......... ceeeee. 25

vi




FINITE ELEMENT MODELING
OF A
CANTILEVER BEAM

By

Jerry F. Kuzanek
Goddard Space Flight Center

ABSTRACT

Three finite element models of uniform beams were designed for digital
computer analysis in an effort to approximate the first twenty-five transverse
frequencies and mode shapes of a 1" X 1" X 25" aluminum cantilever beam. The
first model accounted for only the bending properties in the beam; the second
model accounted for rotatory inertia in the beam in addition to bending; and the
third model accounted for shear flexibility in the beam in addition to bending and
rotatory inertia. Theresults from the first model were compared with the re-
sults according to the Bernoulli-Euler theory of the transverse vibrations of
uniformbeams; those from the second model with those according to the Rayleigh
theory; and those from the third model with those according to the Timoshenko
theory. In general, the agreement between model and theory was excellent.

In order to ascertain the applicability of the third model to thicker beams,
in which shear flexibility becomes increasing more important, an aluminum
cantilever beam 10" thick, 5" deep, and 25" long was considered. Once again
the agreement between the finite element model and the applicable Timoshenko
theory was excellent.

vii



FINITE ELEMENT MODELING
OF A
CANTILEVER BEAM

by

Jerry F. Kuzanek

1. INTRODUCTION

A finite element model of an elastic structure consists of a scheme for
representing the mass properties at a finite number of points and the elastic
properties among these points. Formally, the representations of elastic prop-
erties are known as structural elements of the model and their points of connec-
tion are known as grid points. The mass and rotatory inertia of the structure
are distributed at the grid points of the model. Hence the uniform distribution
of mass of the structure is approximated by the lumped distribution of mass of
the model. The static and dynamic equations for the model are then solved
through the use of a structural analysis computer program in order to deter-
mine the static and dynamic characteristics of the model.

For the results presented in this paper, the Martin Company's SB038
structural analysis "force method" computer program was used to obtain only
the dynamic characteristics of three finite element models of a cantilever beam.
In order to determine dynamic characteristics, this structural analysis pro-
gram requires the following six categories of input:

(a) Coordinates of grid points.

(b) Directions of equations of equilibrium at each grid point.
(c) Dynamic degrees of freedom at each grid point.

(d) Mass and moments of inertia at each grid point.

(e) Types of structural elements at or between grid points.
(f) Compliances of these structural elements.

The value of a finite element model is realized by its being able to obtain
approximations to both the static and dynamic characteristics of a complex
structure, of which the exact characteristics are unobtainable due to the im-
possibility of solving the equations describing the elastic behavior of that struc-
ture. Of course, it is quite possible that improper modeling may result in the



characteristics of the model being entirely different from the true character-
istics of the structure, and the analyst, having no reference with which to com-
pare these characteristics of the model, would be unaware of these differences.
However, if the analyst were to model simple structures, for which theoretical
results are available, he would be able to assess the applicability of his models
to these simple structures through a comparison of the characteristics of his
models to the characteristics of the simple structures. The methods used to
obtain the best models could then be applied to more complicated structures.

The purpose of this report is to establish methods for the finite element
modeling of a particular simple structure, namely a uniform, isotropic, cantilever
beam. It should be emphasized that the first, second, and third finite element
models discussed in this paper attempt to account for only those properties of a
cantilever beam which are accounted for by the Bernoulli-Euler, Rayleigh, and
Timoshenko theories respectively. Furthermore, these three finite element
models may be used to model uniform beams with end conditions different from
clamped-free merely by modifying the reaction elements at the ends of these
models.

2. THEORETICAL SOLUTIONS

The following frequency and modal equations for the transverse vibrations
of a uniform cantilever beam according to the Timoshenko theory were obtained
from reference (1). The frequency and modal equations according to the Ray-
leigh and Bernoulli-Euler theories are special cases of these.

The following notation is used:

y = Coordinate along length of beam

z = Coordinate of lateral displacement
= Length of beam

= Cross sectional area

Density

= Young's modulus

= Shear modulus

- 0O ™ v » O
I

= Area moment of inertia of cross section
about bending axis




A
N

Timoshenko's shear coefficient

w = Frequency of vibration in radians per second

o = Ap = Mass per unit length of beam

B =EI = Bending stiffness

C =k'AG = Shear stiffness

s =v/I/A = Radius of gyration of beam cross section.
¢ =y/L = Lengthwise position variable

n = z/L = Lateral displacement variable

# =wlL?/o/B = Frequency parameter

o]

= B/CL?% = Parameter proportional to shear flexibility
B =s?/L? = Parameter proportional to rotatory inertia.

p? =2 {¢? @i (F (@-5)2+447) }

N

1 ,
a? = 2 {82 @)+ V(B (a-B)7 44477 }
There are two frequency and two modal equations for the transverse vibra-
tions of a cantilever beam according to the Timoshenko theory depending upon

whether q? is positive or negative. If q2 is positive then the frequency equation
is

2+{2+¢2%(a-B)2} cos p coshq-¢2(a+pB) Sig p Sin;’ - 0, (2.1)

and the corresponding modal equation is

Kn = (Sigp- sinzq) {p (a* + p%0) sinpé-q (p?-#?a)sinh q¢} (2.2)

+{(@?% +$?a) cos p+(p? -¢%a) cosh q} (cos p& ~cosh q&),

in which¢ is a solution of (2.1), and K is an arbitrary constant.

Ifq? is negative, we putq? = - r? , so that the frequency equation becomes

2+ {2+ ¢2(a-B)?} cospcosr-¢2(a+f) sinp sinr_ 0, (2.3)
P r .



and its corresponding modal equation becomes

Kn = (sinp _sinr ) {p(r? -p2a) sinpé&-r(p? -¢p2a) sinré} (2.4)
p r

+ {(r2 -¢2a) cos p - (p? -¢2a) cos r} (cos pé -~ cos r¢).

If bending and rotatory inertia are to be considered, but shear flexibility is
to be regarded as infinite, then we obtain the frequency and modal equations ac-
cording to the Rayleigh theory by puttinga =0 in (2.1), (2.2) and in the expres-
sions defining the quantities p?> and q> . The frequency equation becomes

2+(2+¢28% cospcoshq-¢323 sinp Slnhq:0, (2.5)
p q

and the corresponding modal equation becomes

Kn=(qsinp-psinhq) (qsinpf -psinhq¢)
(2.6)

+(q? cos p + p2 coshq) (cos p& -cosh q¢).

It can be shown that when shear flexibility is considered to be infinite, q is never
negative, so that we only have one frequency and one modal equation in this case.

If only bending is to be considered, then the frequency and modal equations
according to the Bernoulli-Euler theory are obtained by putting a = 8=0 in
(2.1), (2.2), and in the expressions defining the quantities p? and q? . It follows
that p2 = q? = ¢ . The frequency equation becomes

1 +cosVeé -cosh Ve =0, (2.7)
and the modal equation becomes
Kn = (sin V¢ -sinhVe ) (sin & V¢ - sinh £V ) (2.8)
+ (cos v + cosh Vg ) (cos £€Vd - cosh &V ).




In order to obtain the solutions to equations (2.1) - (2.8), the author wrote
a Fortran IV computer program for the IBM 7094 using double precision arith-
metic. Incorporated in this program was the Share Library subroutine A1 ROOT,
which was modified from single to double precision.

3. FINITE ELEMENT MODELS

Three Digit Bending Model

The first model (Figure 1) is named a three digit bending model after the
name of its dominant finite element. The three digit bending element is char-
acterized by two linked linear elements with balanced moments at the joint. The
grid points of this model are evenly spaced along a straight line with the first
grid point at the origin of a Cartesian coordinate system. Transverse equations
of equilibrium at each grid point and one moment equation of equilibrium at the
first grid point are needed for equilibrium of the model. Moment equations of
equilibrium at the other grid points are not needed because the three digit bending
element establishes moment equilibrium internally. Dynamic degrees of freedom
in the transverse direction are needed at all grid points except the first. The
mass of the beam is uniformly distributed at the grid points of this model. Since
no grid point has rotational degrees of freedom, no grid point can have moments
of inertia assigned to it. Therefore, this model attempts to account for only the
bending properties of uniform beams. Hence, its dynamic characteristics will
be compared with those obtained from the Bernoulli-Euler beam theory.

At the first grid point, infinitely stiff axial and moment reaction elements
are required to simulate the clamped end of the beam. A two digit bending ele-
ment is placed between grid points one and two with bending at grid point one.
The compliance of this element is given by

C = 1/3EI, (3.1)

where { is the distance between these grid points, E is Young's modulus and I

is the area moment of inertia of a cross section of the beam about its bending
axis. Three digit bending elements are placed among each consecutive triplet
of grid points with balanced bending moments at the intermediate grid point.
The compliance for these elements is given by equation (3.1) where £ is now

the sum of the distances between the first pair and the second pair of points of a
consecutive triplet of grid points. Since the grid points in this model are all
evenly spaced along a straight line, the compliance of a three digit bending
element for this model is twice that of a two digit bending element. Consecutive
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= AXIAL REACTION ELEMENT AT GRID POINT ).

= MOMENT REACTION ELEMENT AT GRID POINT I.

= THREE DIGIT BENDING ELEMENT AMONG GRID POINTS
I, 2, AND 3 WITH BALANCED BENDING MOMENTS AT
GRID POINT 2.

@L@ = TWO DIGIT BENDING ELEMENT BETWEEN GRID POINTS
I AND 2 WITH BENDING AT GRID POINT I.
Figure 1-Three Digit Bending Model (n Partitions)

pairs of three digit bending elements are coupled to each other and their coupled
compliance is given by

C=4£/12EI. (3.2)

The two digit bending element between grid points 1 and 2 is coupled to the
three digit bending element among grid points 1, 2, and 3, and the value of their
coupled compliance is the same as that for the coupled compliance between con-
secutive three digit bending elements.

Two Digit Bending Model

The second model is named a two digit bending model (Figure 2), after the
name of its dominant finite element. This model is essentially the same as the
previous model with the exception that each three digit bending element is re-
placed by two two digit bending elements. There is a pair of two digit bending
elements between each pair of consecutive grid points with the exception of the
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%—@ TWO DIGIT BENDING ELEMENT BETWEEN GRID POINTS
| AND 2 WITH BENDING AT GRID POINT |.

Figure 2—Two Digit Bending Model (n Partitions)

AXIAL REACTION ELEMENT AT GRID POINT I.

MOMENT REACTION ELEMENT AT GRID POINT |

H

last pair. The compliance of each two digit bending element is given by equation
(3.1) and the coupled compliance of each pair of two digit bending elements is

C=1/6EI (3.3)

where { is its length. Transverse equations of equilibrium at all grid points and
moment equations of equilibrium at all grid points except the last are needed for
equilibrium of the model. Dynamic degrees of freedom in the transverse direction
are assigned to all grid points except the first and rotational dynamic degrees of
freedom are assigned to all grid points except the first and last. As in the pre-
vious model, the mass of the beam is uniformly distributed at the grid points of
this model. Since this model has rotational degrees of freedom at all grid points
except the first and last, moments of inertia can be assigned to these grid points
in order to account for the rotatory inertia of the beam. This assignment has
been made in the following way.
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Figure 3-Slice of Beam

Suppose the distance between consecutive grid points is £ . Consider a thin

slice of the beam of dimensions given in Figure 3. The moment of inertia of this
slice about its neutral axis is

1 a c/2 Syi/2
J‘:VJ j J M (y? + z2) dy dz dx
0 -c/2 Y -8y,/2
(3.4)
acm dy.
Ehihilis B L PP AP NN
12V 3y +¢)
where V is the volume of the slice and m, is its mass. Since
V =23y, ac, (3.9)
we have
M 2 2
1, =i—2—(8yi +c?). (3.6)
Now if n of these slices comprise one beam segment of length { then
l"lSyi = '{, (3.7)

and




nm =m, (3.8)

1

where m is the mass of this segment. Hence, the rotatory inertia of this segment
is

Jb =1im Ji
5yi*0 i=1
nmi
=lim = &y, 2+c?) (3.9)
12 i
Syl_-»O
_mc2
T 12

Since the grid points of this model are evenly spaced along a straight line, this
is also the moment of inertia which is assigned to every grid point except the
first and last. Therefore, this model attempts to account for both bending and
rotatory inertia in uniform beams. Hence, its dynamic characteristics will be
compared with those obtained from the Rayleigh theory.

Diagonal Model

The third model is named a diagonal model (Figure 4) primarily because it
contains tension elements located in a diagonal direction. Their function is to
simulate the additional consideration of shear flexibility in the beam.

The grid points of this model are evenly spaced along two parallel straight
lines. Transverse and longitudinal equations of equilibrium are needed at each
grid point for equilibrium of the model. Dynamic degrees of freedom in both
the transverse and longitudinal directions are specified at all grid points except
the first two. The mass of the beam on each side of the neutral plane is uni-
formly distributed at the corresponding grid points on each side of the neutral
plane, so that the beam and the model have the same mass. If we require that the
rotatory inertia of the model be equal to the rotatory inertia of the beam, then
we can uniquely determine the distance h of the grid points from the neutral
plane.
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Figure 4-Diagonal Model (n Partitions)

The rotatory inertia of a beam segment of length £ was given by

(3.9)

The moment of inertia of two masses m/2, each a distance h from the neutral

axis is
J,=2 (30 =mn?. (3.10)
Equating J, and J_ yields
h=c/V12. (3.11)
The area moment of inertia of a cross section of the beam is
* /2 a C3
I-= 2 dzdx = , .
J j 2% dzdx = =7 (3.12)
0 -c/ 2

10




and by putting A= ac , this becomes

Ac?
12

(3.13)

Combining (3.11) with (3.13) yields

h 1/{ ) (3.14)

Infinitely stiff axial reaction elements in the longitudinal direction at grid
points one and two and an infinitely stiff axial reaction element in the transverse
direction at either grid point one or two are required to simulate the clamped
end of the beam. The transverse tension elements are infinitely stiff so that
Poisson coupling is not considered in this model, just as it is not considered in
the Timoshenko theory of the transverse vibrations of uniform beams.

In order to determine the compliance of the longitudinal tension elements
we divide the beam and the model into segments, as in Figure 5. It can be seen
that the longitudinal tension elements will contribute solely to the effects of
bending during the transverse vibrations of the beam. If a moment M is applied
to the end of a beam segment and to the end of a model segment, then we shall
require that a fiber of length £ in the beam, a distance h from the neutral plane,
undergo the same deformation as a longitudinal tension element in the model,
which is also a distance h from the neutral plane. From the theory of the bend-
ing of beams, the deformation of this fiber is

£thM
by = L - (3.15)

When this moment M is applied to a model segment, it is equivalent to applying
equal and opposite forces of magnitude

M
h

F- (3.16)

N
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b) DIAGONAL MODEL SEGMENT

Figure 5~Beam and Diagonal Model Segment

to the two longitudinal tension elements, whose compliances are given by
Cp== - (3.17)

Replacing 8 by the value of 8, in (3.15), using (3.16), and noting that

h=vI/A from (3.14), we have as the compliance of the longitudinal tension
elements

4
Cp=a - (3.18)

12




In order to determine the compliance of the diagonal tension elements,
notice is taken of the fact that due to the pin connection of the points, these ele-
ments will contribute solely to the effects of shear flexibility during the trans-
verse vibration of the beam, as can be seen in Figure 6. By applying a given
shear force to a cross section of 2 beam segment and an equivalent shear force
at the grid points of a model segment, we require that the angle of shear ¥ at the
neutral axis of the beam be the same as the angle of shear 7 at the neutral axis
of the model. We note that since the transverse tension elements cannot carry
bending loads, the angle of shear ¥ in the model is the same at any distance,
measured in a transverse direction, from the neutral axis, so that we may speak
of "the angle of shear y " without specifying its location with respect to the
neutral axis.

The length of the diagonal tension element, before any deformation occurs,
is

—(r2 2\1/2
£, =(? +anny’" %, (3.19)
where 4 and h are as in figure 5. After a shear deformation, its length becomes

L,= (342024 (£2-87) V2, (3.20)‘

according to figure 6. Putting 7y = 5/4{ , this becomes

2, = (4%2h + 4h2 + 42 (3.21)

3
ll 2h
Figure 6—Shear Deformation of a Diagonal Model Segment

13



which may be expressed as,

A, = (4h2 L £2)}/2 (%Jr 1> v (3.22)
+

Expanding the second term on the right hand side by the binomial theorem and
disregarding terms of order greater than one in ¥, we have the approximation

R, o (a2 A2 (1, 2VAh ) (3.23)
ah? , 42

Hence the extensional deformation of this diagonal tension element is

2% 4h
b =4 ~dy= —2XR (3.24)
(4h2 +/{)/2)1/2

Now suppose a shear force V is applied to both cross sections of a beam
segment. An equivalent shear force in the model segment with one diagonal
tension element removed (Figure 7) can be obtained by applying forces of magni-
tude V/2 to the four grid points of the model segment, in the same direction as
the shear forces acting on the beam segment. In order to maintain rotational
equilibrium of this segment, we must have forces of magnitude V£/4h, acting
at the four grid points of this segment, in the direction of the longitudinal ten-
sion elements. The resultant tension T, in the diagonal tension element is

(4h2 4 £2)1/2 (3.25)

._
=<

If we assume that both diagonal tension elements carry the same load, then the
tension in each of them is

T
Tz?‘ :-&% (4h? 4, £2)1/2 (3.26)

If Q is the average shear stress on a cross section of the beam then
\
=3 (3.27)

14
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Figure 7—Shear Forces Acting at the Grid Points of a Diagonal
Model Segment

where A is the area of that cross section. Timoshenko's shear coefficient k' is
defined as

k=9 (3.28)

where G is the shear modulus of the beam, and 7y is the angle of shear at the
neutral axis of the beam. Therefore equation (3.26) may be written as

vk’ AG
T= 4h

(4h? 4 42172 (3.29)
The compliance of this diagohal tension element is by definition
C,=—. (3.30)

Using equations (3.24) and (3.29) and equating the angle of shear 7y in the model
to the angle of shear -y at the neutral axis of the beam, we have

84 h?

T k' AG (4n2 4 42) (3.31)

15



In summary, we have determined the distance of the grid points from the
neutral plane (3.14), the compliance of the longitudinal tension elements (3.18),
and the compliance of the diagonal tension elements (3.31), so that this diagonal
model accounts for rotatory inertia, bending, and shear flexibility respectively,
precisely those properties considered in the Timoshenko theory of the trans-
verse vibrations of uniform beams.

EXAMPLES

1" x 1" x 25" Aluminum Cantilever Beam

As a first example, an aluminum cantilever beam was considered with the
following parameter values.

1.0 in. = Thickness
1.0 in. = Depth
25 .0 in. = Length
0.1 lb./in3, = Weight density

1.0 x 107 1b/in2.
4.0 X 10% 1b/in?,

Young's modulus

Shear modulus

.822 = Timoshenko's shear coefficient

This value of Timoshenko's shear coefficient, in addition to the method used to
obtain it, can be found in reference (2).

The input data to the structural analysis computer program for the three
finite element models with 25 partitions is shown in Table I.

Table II gives a comparison between the transverse frequencies of vibration
of this beam as determined from the three beam theories and the three finite
element models. The per cent error in the frequencies of the models was
obtained by comparing the three digit bending model with the Bernoulli-Euler
theory, the two digit bending model with the Rayleigh theory, and the diagonal
model with the Timoshenko theory. The per cent error in frequency for most
mode numbers, contrary to what one might suspect, was greatest for the three
digit bending model. At the time of the writing of this paper, this fact was un-
explained. It should be mentioned that when the two digit bending model was
modified by excluding the moments of inertia at its grid points, the frequencies
and mode shapes for this modified model agree exactly with the frequencies and

16
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TABLE III
1" x 1" x 25" Aluminum Cantilever Beam

T Frequencies in Radians
Per Second
Mode Diagonal
Number Timoshenko
Theory Mo.d.el % Error
50 Partitions
T
1 318.7 318.6 .011
2 1982.3 1982.1 .010
3 5486,2 5487.3 .020
4 10575.5 10583.2 073
5 17129.8 17154.0 141
6 24990.1 25043.8 215
7 33994.9 34091.8 .285
8 43988.2 44139.5 344
9 54826,2 55036.7 .384
10 66380.0 66645.7 400
11 78537.1 78842.1 388
12 91200.6 91513.9 344
13 104287,7 104562.5 .263
14 117728.5 117903.7 .149
15 131463.7 131456.3 .006
16 145443.6 145153.0 .200
17 159625.8 158935.7 432
18 173974.9 172744.5 LJ07
19 188460.4 186533.0 1.023
20 203056.6 200257.1 1.378
21 217741.3 213870.5 1.778
22 232495.1 227340.9 2.217
23 247301.2 240621.2 2,701
24 262144 .4 253688.4 3.226
25 277010.8 266523.0 3.786
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mode shapes obtained from the three digit bending model. Therefore, these
large errors do not appear to be caused by some property peculiar to the three
digit bending model.

It is interesting to note that for almost all mode numbers, the frequencies
of the two digit bending model had the smallest error. However, the reader must
bear in mind that the two digit bending model accounted for exactly those prop-
erties of a beam accounted for by the Rayleigh theory, which is less accurate in
predicting the actual frequencies of a uniform beam than the Timoshenko theory.
It is apparent from Table II that if the frequencies of all three models were com-
pared with those of the Timoshenko theory, then the diagonal model would pro-
duce the smallest errors in frequency.

In order to decrease the per cent error in the frequencies of the diagonal
model, the number of its partitions was increased from 25 to 50. The fre-
quencies and per cent error in frequencies for this refined diagonal model are
shown in Table IIl. We notice that the error in the first 16 frequencies was less
than or equal to 0.4 per cent and that the error in the first 25 frequencies was
less than 4.0 per cent.

In order to illustrate the degree of approximation of the mode shapes of
these models to the mode shapes obtained from the three beam theories, two
mode shapes, the fifth and tenth, are given in Tables IV and V respectively, and
have been choosen to be representative of the results obtained for the other mode
shapes. For these two mode shapes, the agreement between the models and
the beam theories is fairly good.

10" X 5" X 25" Aluminum Cantilever Beam

In the previous example, the first 25 frequencies and mode shapes, accord-
ing to the three beam theories, followed a very regular pattern. The frequencies
were fairly evenly spaced and the nth mode shape always had n nodes, as should
be expected. This regular pattern was due to the bending action in this beam
being predominant in producing transverse vibration while shear flexibility, in
the results according to the Timoshenko theory, produced only secondary effects.
If thicker beams were considered, the results according to the Bernoulli-Euller
and Rayleigh theories would again follow this regular pattern. However, it has
been shown in reference (1) that for thick beams, in which shear flexibility is
important, the frequencies no longer remain evenly spaced and it is possible for
two mode shapes to have the same number of nodes. These results are a con-
sequence of interactions between the bending and shear modes of vibration of
the beam,
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If the diagonal model is to be considered a good approximation to the
Timoshenko beam, then the irregular pattern in the frequencies and mode shapes
of thick beams, as predicted by the Timoshenko theory, must also occur in the
frequencies and mode shapes of the diagonal model. For this reason the second
example was chosen to be an alumnium cantilever beam 10 inches thick, 5 inches
deep, and 25 inches long. The same parameter values for aluminum as used in
the previous example, were used for this beam.

Table VI shows the frequencies obtained from the Timoshenko theory and
the diagonal model with 50 partitions in addition to the per cent error in the
frequencies of this model. We notice that the difference between the third and
fourth frequencies is less than the difference between the second and third fre-
quencies for both the theory and the model. In other words, the rate of change
between consecutive frequencies is decreasing, a fact which was not true for the
frequencies, according to the Timoshenko theory, of the previous example. The
reason for this is due to a strong coupling between the bending and shear modes
of vibration which occurs just beyond the fourth mode number. This phenomenon
is discussed in both references (1), and (2). In addition, we notice that the errors
in the first 25 frequencies of the model, with the exception of the 22 nd, are all
less that 2.0 per cent, and the pattern in these errors is much more erratic than
in the previous example.

Table VII shows the fourth, fifth, and eleventh mode shapes for both theory
and model. We notice that both the fourth and fifth mode shapes have only four
nodes and that the fifth mode shape has an unusual configuration at the free end.
This phenomenon has also been noted in reference (1). In addition, we notice
that the agreement between the Timoshenko theory and the diagonal model for
these two mode shapes is excellent. This appears to be in sharp contrast to the
results for the eleventh mode shape, in which the patterns are the same, but the
magnitude of most displacements is about five and one half times greater for the
Timoshenko theory than for the diagonal model. However, this disagreement is
only apparent, for if each mode shape had its largest component of displacement
nomalized to one, then the displacements at the other points along the length of
the beam and model would agree more favorably. The comparison between the
other mode shapes according to the Timoshenko theory and the mode shapes of
this diagonal model showed similar agreement. Therefore, the diagonal model
does give good approximations to the transverse frequencies and mode shapes of
a cantilever beam as obtained from the Timoshenko theory, even for very thick
beams.
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TABLE V1
Frequencies of a 10" x 5" X 25" Aluminum Cantilever Beam

Frequency in Radians
Mode Per Second
Number .
Timoshenko Diagonal
Theory Model % Error
M 50 Partitions
1 2861.9 2861.6 .027
2 12097.7 12095.1 .021
3 25910.2 25895.0 .058
4 37716.1 37689.8 .070
5 47094.1 47058.5 075
6 52495.8 52423.9 137
7 62311,0 62192.8 .190
8 70175.9 69973.1 .289
9 78956.2 78724.5 .293
10 87179.9 86728.3 .518
11 98134,6 97742.3 400
12 102856.5 102091.8 .744
13 117245.7 116070.5 1.002
14 120262.8 119600.8 .551
15 132359.6 130627.8 1.308
16 141958.4 140607.6 .952
17 147824,0 145807.4 1.364
18 159883.9 156891.9 1,871
19 167721.0 166172.4 .923
20 174826,2 173080.3 999
21 189110.3 189324.,5 .113
22 191125.4 198161.7 3.682
23 203759.9 205859.9 1.031
24 214180.1 213119.3 495
25 218725.6 221291.4 1.173
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4, CONCLUSIONS

Three different finite element models of a 1'" X 1" X 25" aluminum canti-
lever beam have been used to approximate its frequencies and mode shapes.
Most significant among these models was the diagonal model in which bending,
rotatory inertia, and shear flexibility were considered. The first seventeen
frequencies of the diagonal model with twenty five partitions differed from those
according to the Timoshenko theory by less than 2 per cent, If shear flexibility
is not to be considered, then the number of degrees of freedom can be halved by
using a two digit bending model while maintaining the same number of partitions.
We have seen that the first eighteen frequencies of the two digit bending model
with twenty five partitions differed from those according to the Rayleigh theory
by less than 2 per cent. If only bending is to be considered, then the number of
degrees of freedom can be halved again by using a three digit bending model for
the same number of partitions. The first eleven frequencies of this model with
twenty five partitions differed from those according to the Bernoulli-Euler
theory by less than 2 per cent.

The real value of the diagonal model as an analytical tool was realized when
an aluminum cantilever beam 10" thick, 5'" deep, and 25" long was considered.
According to the Timoshenko theory, it is possible for two mode shapes to have
the same number of nodes. This phenomenon was exhibited in the first twenty
five mode shapes of the diagonal model with fifty partitions in exactly the same
way as in the mode shapes according to the Timoshenko theory. In addition, the
first twenty five frequencies, with the exception of the twenty second, of this
diagonal model differed from those according to the Timoshenko theory by less
than 2 per cent. Therefore, the diagonal model does provide a good approxima-
tion to the tfransverse frequencies and mode shapes of uniform cantilever beams.
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